Name: Datum:

Definition: Gleichschenkliges Dreieck

Ein Dreieck, in dem

mindestens zwei Seiten gleich lang sind

heißt gleichschenkliges Dreieck. Die Länge der dritten Seite ist beliebig.

Die beiden gleich langen Seiten des Dreiecks heißen <u>Schenkel</u>, die dritte Seite <u>Basis</u> des Dreiecks. Die beiden an der Basis anliegenden Innenwinkel des Dreiecks heißen <u>Basiswinkel</u>.

Arbeitsaufträge:

a)	(Blatt) Zeichne mindestens drei gleichschenklige Dreiecke in verschiedenen Formen und Größen
	(Tipp: Zeichne zuerst die Basis und benutze dann den Zirkel) und markiere jeweils die beiden gleich
	langen Schenkel rot.

b)	(Blatt) Schreibe auf, was dir Besonderes an den gleichschenkligen Dreiecken, insbesondere an den
	Basiswinkeln und ihren Weiten, auffällt.

Satz über die Innenwinkel in gleichschenkligen Dreiecken

• In jedem gleichschenkligen Dreieck sind die Weiten der beiden Basiswinkel gleich.

© 2003 Thomas Unkelbach Seite 1 von 2

Arbeitsaufträge:

- c) (Blatt) Prüfe durch Messen der Winkelweiten in deinen gleichschenkligen Dreiecken nach, ob die Behauptung des "Satzes über die Innenwinkel in gleichschenkligen Dreiecken" wahr sein kann.
- d) Starte das Programm ,EUKLID DynaGeo'.
 - Lade die Datei, Innenwinkel in gleichschenkligen Dreiecken'.
 - Verändere die Lage der drei Eckpunkte des Dreiecks und beobachte die Winkelweiten der beiden Basiswinkel des Dreiecks.
 - Überprüfe, ob die Behauptung des "Satzes über die Innenwinkel in gleichschenkligen Dreiecken" richtig sein kann.
 - Beende das Programm ,EUKLID DynaGeo'.
- e) (Blatt) In einem gleichschenkligen Dreieck ist jeweils die Winkelweite eines Basiswinkels angegeben. Gib die Winkelweiten der beiden anderen Winkel an.
 - (1) $\alpha = 50^{\circ}$; $\beta = \dots$; $\gamma = \dots$
 - (2) $\alpha = \dots; \beta = 33^{\circ}; \gamma = \dots$
 - (3) $\alpha = \dots; \beta = \dots; \gamma = 67^{\circ}$
 - (4) $\alpha = 83^{\circ}$; $\beta = \dots$; $\gamma = \dots$
- f) (Blatt) In einem gleichschenkligen Dreieck ist jeweils die Winkelweite des Winkels, der nicht Basiswinkel ist, angegeben. Gib die Winkelweiten der beiden anderen Winkel an.
 - (1) $\alpha = 50^{\circ}$; $\beta = \dots$; $\gamma = \dots$
 - (2) $\alpha = ; \beta = 33^{\circ} ; \gamma =$
 - (3) $\alpha = \dots; \beta = \dots; \gamma = 120^{\circ}$
 - (4) $\alpha = 153^{\circ}$; $\beta = \dots$; $\gamma = \dots$
- g) (Blatt) In einem gleichschenkligen Dreieck seien α und β die Winkelweiten der beiden Basiswinkel. Gib die Winkelweiten der drei Innenwinkel unter der angegebenen Bedingung an.
 - (1) γ ist doppelt so groß wie α : $\alpha = \dots$; $\beta = \dots$; $\gamma = \dots$
 - (2) α ist um 15° größer als γ : $\alpha = \dots; \beta = \dots; \gamma = \dots; \gamma = \dots$
 - (3) α und β sind zusammen genau so groß wie γ :

$$\alpha = \dots; \beta = \dots; \gamma = \dots$$

(4) β ist um 30° kleiner als γ : $\alpha = \dots; \beta = \dots; \gamma = \dots$

Lösungen:

e) (1)
$$50^{\circ}$$
, 80° (2) 33° , 114° (3) 46° , 67° (4) 14° , 83° **f**) (1) $2*65^{\circ}$ (2) $2*73,5^{\circ}$ (3) $2*30^{\circ}$ (4) $2*13,5^{\circ}$ **g**) (1) $2*45^{\circ}$, 90° (2) 50° , $2*65^{\circ}$ (3) $2*45^{\circ}$, 90° (4) $2*50^{\circ}$, 80°

- Weißt Du die Definition eines gleichschenkligen Dreiecks?
- Weißt Du die Behauptung des "Satzes über die Innenwinkel in gleichschenkligen Dreiecken"?