Stationenlernen Kondensator E8 - Das RC-Glied als Integrierglied

Geräte:

Funktionsgenerator (PASCO scientific MODEL 9301° GENERATOR 2):

Einstellungen: Frequenz: 50Hz, Amplitude: 12⁰⁰; Signal: Rechteck; Modulation: Off

Oszilloskop (HAMEG HM 312):

Einstellungen: Dual; Chop; AMPL.I: 2V/cm; AMPL.II: 0,1V/cm; TIMEBASE: 2ms

Grundplatte und Brücken

Widerstände: $47k\Omega$, $220k\Omega$, $470k\Omega$, $1M\Omega$

Kondensatoren: 0,1μF, 1μF 2 Messkabel für Oszilloskop

2 Laborkabel

Theorie:

An eine Reihenschaltung aus einem ohmschen Widerstand R und einem Kondensator (Kapazität C) werden Wechselspannungen unterschiedlicher Form gelegt und mit der Spannung U_2 am Kondensator verglichen (Fig. 15.21).

Schaltskizze

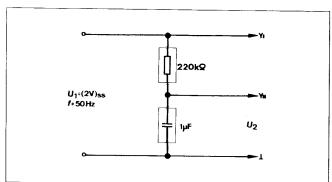


Fig. 15.21

Ist die Phasendauer der Eingangswechsel-Spannung U_1 sehr klein im Vergleich zur Zeit-Konstanten $R\cdot C$, dann ist die Ausgangsspannung U_2 proportional zur integrierten Spannung U_1 .

Zur theoretischen Begründung

Zwischen dem Strom I und der Spannung $U_c = U_2$ am Kondensator gilt allgemein:

$$I = c \frac{dU_2}{dt}$$
Mit $I = \frac{U_R}{R}$ folgt daraus $U_R = R \cdot C \frac{dU_2}{dt}$

Ist die Phasendauer T_1 sehr klein gegenüber der Zeitkonstanten $R \cdot C$, $(T_1 \leqslant R \cdot C)$, dann ist $U_2 \leqslant U_{\mathbb{C}}$ und somit $U_{\mathbb{R}} \approx U_1$, so daß folgt:

$$U_1 \approx R \cdot C \frac{dU_2}{dt}$$
 oder

$$U_2 \approx \frac{1}{R \cdot C} \int_0^{\bullet} T_1 U_1 dt + U_{2(0)}$$

Nachprüfung der Integrierbedingung Im Beispiel ist:

$$T_1 = \frac{1}{50 \text{ Hz}} = 20 \text{ ms}$$

 $R \cdot C = 220 \text{ k}\Omega \cdot 1 \text{ } \mu\text{F} = 220 \text{ ms}.$

Die Bedingung $T_1 \ll R \cdot C$ ist also erfüllt.

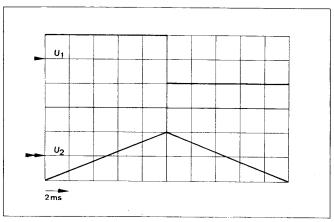


Fig. 15.22

Versuchsdurchführung

a) An das Integrierglied wird Rechteckspannung $U_{\rm 1ss} = 2{\rm V}$ gelegt.

Einstellungen am Oszilloskop

DUAL, CHOP.

Nullinie von U_1 : 2. Rasterlinie von oben

VERT. INPUT I: DC

VERT. AMPL. I: $1 \frac{v}{cm}$

Nullinie von U_2 : 2. Rasterlinie von unten

VERT. INPUT II: DC

VERT. AMPL. II: $20 \frac{\text{mV}}{\text{cm}}$

TRIGG. I (int.), AT

TIMEBASE: $2 \frac{ms}{cm}$

Ergebnis

Fig. 15.22

Die Integration einer Rechteckspannung U_1 führt zu einer Dreieckspannung U_2 .

b) An das Integrierglied wird Dreieckspannung $U_{1ss} = 2 \text{ V}$ gelegt.

Einstellungen am Oszilloskop

DUAL; CHOP.

Nullinie von U_1 : 2. Rasterlinie von oben

VERT. INPUT I: DC

VERT. AMPL. I: $1 \frac{V}{cm}$

Nullinie von U_2 : 2. Rasterlinie von unten

VERT. INPUT II: DC

VERT. AMPL. II: $20 \frac{\text{mV}}{\text{cm}}$

TRIGG. I (int.), AT

TIMEBASE: 2 ms

Ergebnis

Fig. 15.23

Die Integration einer Dreieckspannung U_1 ergibt eine Ausgangsspannung U_2 , die aus aneinandergesetzten Parabelbögen besteht.

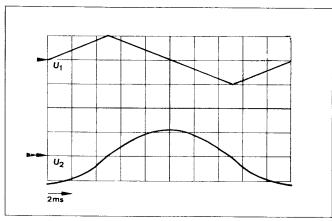


Fig. 15.23

c) An das Integrierglied wird Sinusspannung $U_{1ss} = 2 \text{ V}$ gelegt.

Einstellungen am Oszilloskop

DUAL, CHOP.

Nullinie von U_1 : 2. Rasterlinie von oben

VERT. INPUT I: DC

VERT. AMPL. I: 1 V cm

Nullinie von U2: 2. Rasterlinie von unten

VERT. INPUT II: DC

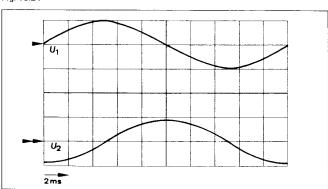
VERT. AMPL. II: 20 $\frac{\text{mV}}{\text{cm}}$

TRIGG. I (int.), AT

TIMEBASE: 2 ms

Ergebnis

Fig. 15.24


Die Integration einer sinusförmigen Spannung U_1 ergibt eine Spannung U_2 , die einer invertierten Cosinusfunktion (einer um 90° "nacheilenden" Sinuskurve) folgt.

Anwendungen

Differenzierglieder und Integrierglieder lassen sich bei der Umformung von Meßgrößen

(Oszilloskopieren einer Hysteresisschleife) einsetzen. Sie spielen außerdem eine große Rolle als Rechenglieder in Analogrechnern.

Fig. 15.24

